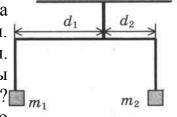

Демо-вариант по физике Часть 1

Ответами к заданиям 1-24 являются цифра, слово, число или последовательность цифр или чисел.

1. На графике приведена зависимость скорости тела от времени при прямолинейном движении. Определите ускорение тела.


Ответ:	$\mathrm{M/c}^2$

2. Деревянный брусок массой T = 0.2 кг, площади граней которого связаны отношением $S_1:S_2:S_3=1:2:3$, скользит равномерно и прямолинейно под действием горизонтальной силы F=0.3H по горизонтальной шероховатой опоре, соприкасаясь с ней гранью площадью S_3 . Каков коэффициент трения бруска об опору, если $S_1=15$ см²?

3. Тело массой 0,1 кг вращается в горизонтальной плоскости на нити длиной 1 м. Чему равна работа силы тяжести за один оборот вращения тела?

Ответ:	Дж

4. Коромысло весов, к которому подвешены на нитях два тела (см. рисунок), находится в равновесии. При этом плечи коромысла равны d_1 =10 см, d_2 =5 см. Массу первого тела уменьшили в 2 раза. Какой длины нужно сделать плечо d_2 , чтобы равновесие сохранилось? m_1 (Коромысло и нити считать невесомыми, масса второго тела не меняется.)

Ответ:_____см.

5. Из начала декартовой системы координат в момент времени t=0 тело (материальная точка) брошено под углом к горизонту. В таблице приведены результаты измерения координат x и y от времени наблюдения. Выберите два верных утверждения на основании данных, приведенных в таблице.

Время, с	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8
Координата x , м	0,3	0,6	0,9	1,2	1,5	1,8	2,1	2,4
Координата у, м	0,35	0,6	0,75	0,8	0,75	0,6	0,35	0

- 1) Тело бросили со скоростью 5 м/с.
- 2) Тело поднялось на максимальную высоту, равную 1,2 м.
- 3) В момент времени t=0,3 с тело удалилось от начала системы координат на расстояние, большее 2 м.
 - 4) Проекция скорости v_y в момент времени t=0,2 с равна 2 м/с.
 - 5) Тело бросили под углом 45°.

Ответ

6. В результате перехода спутника Земли с одной круговой орбиты на другую его центростремительное ускорение уменьшается. Как изменятся в результате этого перехода скорость движения спутника по орбите и период обращения вокруг Земли?

Для каждой величины определите соответствующий характер изменения:

увеличится

уменьшится

не изменится

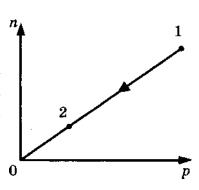
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Скорость движения спутника	Период обращения спутника
по орбите	вокруг Земли

7. Один конец легкой пружины жесткостью k прикреплен к бруску, а другой закреплен неподвижно. Брусок скользит по горизонтальной направляющей так, что его координата изменяется со временем по закону $x(t) = A \sin \omega t$.

Установите соответствие между физическими величинами и формулами, выражающими их изменения во времени.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

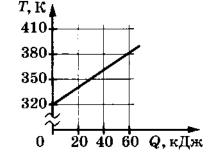

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

ФОРМУЛЫ

- А) потенциальная энергия пружины
- Б) проекция $F_x(t)$ равнодействующей силы на ось x
- 1) $-kAsin\omega t$
- 2) $-kA^2\sin^2\omega t$
- 3) $kA^2 \sin \omega t$
- 4) $\frac{kA^2}{2} \sin^2 \omega t$

Ответ:	A	Б

8. При переводе постоянной массы n_1 идеального газа из состояния 1 в состояние 2 концентрация молекул n пропорциональна давлению p (см. рисунок). Чему равна температура газа в состоянии 2, если начальная температура равна 600 K, а $p_1/p_2 = 3$?



Ответ:	К

9. На рисунке изображен график зависимости температуры тела от подводимого к нему количества теплоты. Удельная теплоемкость вещества этого тела равна 500 Дж/(кг•К). Чему равна масса тела?

Ответ: кг.

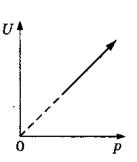
10. На рисунке показан график зависимости давления одноатомного идеального газа от температуры при постоянной массе. В состоянии 1 внутренняя энергия газа равна 1,5 кДж. Чему равна внутренняя энергия газа в состоянии 2?

p, 10³Πa **∮**

Ответ: кДж.

11. Твердое вещество медленно нагревалось в плавильной печи с постоянной мощностью. В таблице приведены результаты измерений температуры вещества с течением времени.

3	1	_		_	
2:		1		}	
4				2	
. 1				1	
0	300	0 60	00 9	00	Ť, K

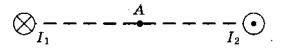

Время,	5	1	1	2	2	3	3
Температу	3	3	3	3	3	3	3

Выберите из предложенного перечня два утверждения, которые соответствуют результатам проведенного экспериментального исследования, и укажите их номера.

- 1) Температура плавления вещества в данных условиях равна 329 °C.
- 2) Через 18 мин после начала измерений вещество находилось и в жидком и в твердом состоянии.
 - 3) Теплоемкость вещества в жидком и твердом состояниях одинакова.
- 4) Через 30 мин после начала измерений вещество находилось только в твердом состоянии.
 - 5) Процесс плавления вещества продолжался менее 25 минут. Ответ:

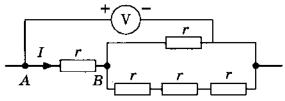
•	

12. На рисунке показан процесс изменения состояния одного моля одноатомного идеального газа (U U — внутренняя энергия газа; р — его давление). Как изменятся в ходе этого процесса объем и теплоемкость газа? Для каждой величины определите соответствующий характер изменения:



- 1) увеличится
- 2) уменьшится
- 3) не изменится

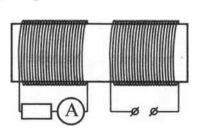
Запишите <u>в таблицу</u> выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

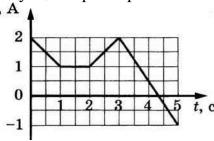

Besin innibi: Endpbi b ofbere mer yr nebre	ритвен.
Объем газа	Теплоемкость газа

13. Магнитное поле создано в точке А двумя параллельными длинными проводниками с токами I_1 и I_2 , расположенными перпендикулярно плоскости чертежа. Как направлен (*вправо*, *влево*, *вверх*, *вниз*, *к наблюдателю*, *от наблюдателя*) вектор индукции магнитного поля \vec{B} в точке A? Ответ запишите словом (словами).

Ответ:_____.

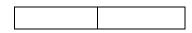
14. Пять одинаковых резисторов с сопротивлением r= 0,5 Ом соединены в электрическую цепь, схема которой представлена на рисунке. По участку AB идет ток I=2A. Какое напряжение показывает идеальный вольтметр?


Ответ: В


15. Определите энергию магнитного поля катушки индуктивностью $2 \cdot 10^{-4}$ Гн при силе тока в ней 3 А.

Ответ:____мДж

16. На железный сердечник надеты две катушки, как показано на рисунке. По правой катушке пропускают ток, который меняется согласно


приведенному графику. На основании этого графика выберите *два* верных утверждения. Явлением самоиндукции пренебречь.

- 1) В промежутке между 1 с и 2 с показания амперметра были равны 0.
- 2) В промежутках 0-1 с и 2-3 с направления тока в левой катушке были одинаковы.
- 3) В промежутке между 1 с и 2 с индукция магнитного поля в сердечнике была равна 0.
 - 4) Все время измерений сила тока через амперметр была отлична от 0.
- 5) В промежутках 0-1 с и 2-3 с сила тока в левой катушке была одинаковой.

Ответ:

17. Стеклянную линзу (показатель преломления стекла $n_{cme\kappa na}$ =1,54), показанную на рисунке, перенесли из воздуха (n_{eoobj} =1) в воду (n_{eoobj} =1,33). Как изменились при этом фокусное расстояние и оптическая сила линзы?

Для каждой величины определите соответствующий характер изменения:

- 1) увеличилась
- 2) уменьшилась
- 3) не изменилась

Запишите <u>в таблицу</u> выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Фокусное расстояние	Оптическая сила

18. На неподвижном проводящем уединенном шарике радиусом R находится заряд Q. Точка O — центр шарика, OA=3R/4, OB=3R, OC=3R/2. Модуль напряженности электростатического поля заряда Q в точке C равен E_C . Чему равен модуль напряженности электростатического поля заряда Q в точке A и точке B?

Установите соответствие между физическими величинами и их значениями.

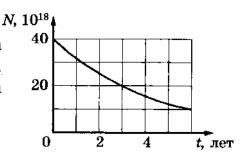
К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами. Сопротивлением контура пренебречь.

· •	C	
$\left(\begin{array}{c} o \\ \end{array}\right)$	$\stackrel{A}{\longrightarrow}$	
	<i>)</i> .	

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ	ИХ ЗНАЧЕНИЯ
А) модуль напряженности	1) 0
электростатического поля заряда Q в	2) 4E _C
точке A	$3) E_{\rm C}/2$
Б) модуль напряженности	$4) E_{C}/4$
электростатического поля заряда Q в	
точке В	

Ответ:

A	Б

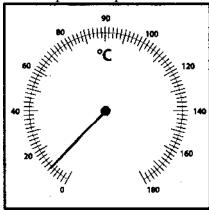

19. Какое количество нейтронов и электронов содержит нейтральный атом $^{60}_{27}Co$

Ответ:

Число нейтронов	Число электронов

20. Дан график зависимости числа нераспавшихся ядер натрия $^{22}_{11}Na$ от времени. Чему равен период полураспада этого изотопа натрия?

21. Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать (v — частота фотона, h — постоянная Планка, p — импульс фотона). К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.


gammant a racing, perspanie grapes	meg coerserens from min ey as a min.
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ	ФОРМУЛЫ
А) длина волны фотона	$1)\frac{p}{h}$
Б) энергия фотона	$2)\frac{h}{p}$
	3) hv
	$4)\frac{v}{h}$

Ответ:

<u> </u>	DC1.
A	Б

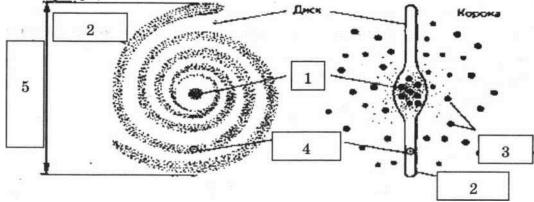
22. Чему равна температура на улице, если погрешность измерения

температуры равна цене деления термометра?

Otbet: (\pm) °C.

23. Для проведения лабораторной работы по обнаружению зависимости сопротивления проводника от его диаметра ученику выдали 5 разных проводников, характеристики которых приведены в таблице. Какие **два** проводника ученик должен выбрать для проведения этой лабораторной

работы?


No	Длина	Диаметр	Материал
1	5 м	1,0 мм	Сталь
2	1 м	0,5 мм	Сталь
3	2 м	1,0 мм	Медь
4	1 м	1,0 мм	Сталь
5	1 м	0,5 мм	Алюминий

Запишите в ответ номера выбранных проводников.

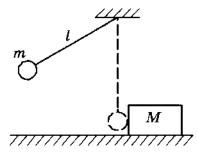
Ответ: _____

24. Рассмотрите схему строения спиральной Галактики (виды

плашмя и с ребра).

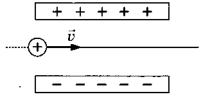
Выберите *все верные* утверждения, которые соответствуют элементам, обозначенным цифрами 1-5.

Цифра 1 — ядро Галактики.

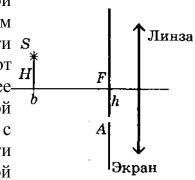

Цифра 2 — скопления белых карликов на краю Галактики.
Цифра 3 — шаровые скопления.
Цифра 4 — положение созвездия Телец в спиральном рукаве.
Цифра 5 — диаметр Галактики примерно 10000 световых лет.
Ответ:

Часть 2

25. В цилиндрическом сосуде под поршнем длительное время находятся вода и ее пар. Поршень начинают выдвигать из сосуда, при этом температура воды и пара остается неизменной. Как будет меняться при этом масса жидкости в сосуде? Ответ поясните, указав, какие физические закономерности вы использовали для объяснения.


Полное правильное решение каждой из задач 26-32 должно содержать законы и формулы, применение которых необходимо и достаточно для решения задачи, а также математические преобразования, расчеты с численным ответом и, при необходимости, рисунок поясняющий решение.

- 26. Смещение груза пружинного маятника меняется с течением времени по закону $x = A sin\left(\frac{2\pi}{T}\right)t$, где период T=1 с. Через какое минимальное время, начиная с момента t=0, потенциальная энергия маятника достигнет половины своего максимума?
- 27. В двух идеальных колебательных контурах с одинаковой индуктивностью происходят свободные электромагнитные колебания, причем период колебаний в первом контуре 9•10⁻⁸ с, во втором 3•10⁻⁸ с. Во сколько раз амплитудное значение силы тока во втором контуре больше, чем в первом, если максимальный заряд конденсаторов в обоих случаях одинаков?
- 28. Когда на металлическую пластину падает электромагнитное излучение с длиной волны λ, максимальная кинетическая энергия фотоэлектронов равна 4,5 эВ. Если длина волны падающего излучения равна 2λ, то максимальная кинетическая энергия фотоэлектронов равна 1 эВ. Чему равна работа выхода электронов из металла?
- 29. Маленький шарик массой m=0,3 кг подвешен на легкой нерастяжимой нити длиной l=0,9 м, которая разрывается при силе натяжения T₀=6 H. Шарик отведен от положения равновесия (оно показано на рисунке пунктиром) и отпущен. Когда шарик проходит положение равновесия, нить обрывается, и шарик тут же абсолютно неупруго сталкивается с бруском массой M=1,5 кг, лежащим неподвижно на гладкой горизонтальной поверхности



стола. Какова скорость и бруска после удара? Считать, что брусок после удара движется поступательно.

- 30. Сосуд объемом 10 л содержит смесь водорода и гелия общей массой 2 г при температуре 27 °C и давлении 200 кПа. Каково отношение массы водорода к массе гелия в смеси?
- 31. Протон влетает в электрическое поле конденсатора параллельно его пластинам в точке, находящейся посередине между его пластинами (см. рисунок). Минимальная скорость v, c которой протон должен влететь в конденсатор, чтобы затем вылететь из него, равна 350 км/с. Длина пластин конденсатора 5 см, напряженность электрического поля конденсатора 5200 В/м. Каково расстояние между пластинами конденсатора? Поле внутри конденсатора считать однородным, силой тяжести пренебречь.

32. Главная оптическая ось тонкой собирающей линзы с фокусным расстоянием F=20 см и точечный источник света S находятся в плоскости S рисунка. Точка S находится на расстоянии b=70 см от Hплоскости линзы и на расстоянии Н=5 см от ееоси. главной оптической В левой фокальной плоскости линзы лежит тонкий непрозрачный экран с малым отверстием А, находящимся в плоскости рисунка на расстоянии h=4 см от главной оптической оси линзы. На каком расстоянии х от плоскости

линзы луч SA от точечного источника, пройдя через отверстие в экране и линзу, пересечет ее главную оптическую ось? Дифракцией света пренебречь. Постройте рисунок, показывающий ход луча через линзу.